The generator matrix

 1  0  1  1  1 X^2  X  1  1  1 X^2+X  1  1  1  1  0  1  0  1  1  X  1  1  X  1  1 X^2  1  1 X^2  0 X^2+X  1  1  1  1 X^2 X^2+X  X  1  1  X  0 X^2+X  1  1  0  1  1  1  1 X^2  X  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  X X^2+X  1  1
 0  1  1 X^2+X X^2+X+1  1  1 X+1  X X^2+1  1 X^2+X X^2+X X^2 X+1  1 X+1  1 X^2  1  1 X^2  1  1  0 X^2+X+1  1 X^2+X  1  1  1  1 X^2  X X+1 X^2+1  1  1  1 X^2 X+1  X  X  1 X^2+X  1  0 X^2+1 X+1 X^2 X^2+X  X X^2  0  0  X  X X^2 X^2  X  X  X  X  0 X^2+X X^2+X  X  X  X  1  1  X  0
 0  0  X  0 X^2+X  X  X X^2  X X^2  0  0 X^2+X  X X^2  0  X X^2+X  0 X^2+X  0 X^2+X X^2 X^2+X  0  X  X  0  X X^2+X  0 X^2 X^2+X X^2+X  0 X^2  0 X^2  X X^2+X X^2 X^2+X X^2 X^2+X X^2  X  X  0  X X^2 X^2+X X^2  X X^2+X  X X^2+X  X  0 X^2  0 X^2 X^2  0  0  X  X X^2+X  X X^2  0  0  X  0
 0  0  0 X^2  0 X^2 X^2 X^2  0 X^2  0 X^2  0 X^2  0 X^2 X^2  0  0 X^2 X^2 X^2  0  0 X^2  0  0  0 X^2 X^2  0 X^2  0 X^2 X^2 X^2 X^2  0 X^2  0  0 X^2 X^2  0  0  0 X^2  0 X^2 X^2 X^2 X^2  0  0  0 X^2 X^2 X^2 X^2 X^2 X^2  0  0  0  0  0  0 X^2  0  0 X^2 X^2  0
 0  0  0  0 X^2 X^2  0  0 X^2 X^2 X^2 X^2  0 X^2 X^2  0  0 X^2 X^2 X^2 X^2  0  0  0 X^2  0  0 X^2  0  0 X^2  0 X^2  0 X^2  0 X^2  0 X^2  0  0 X^2  0 X^2  0 X^2  0 X^2 X^2  0 X^2  0  0  0  0 X^2 X^2 X^2 X^2  0  0  0  0 X^2 X^2  0 X^2 X^2 X^2 X^2  0  0  0

generates a code of length 73 over Z2[X]/(X^3) who�s minimum homogenous weight is 68.

Homogenous weight enumerator: w(x)=1x^0+32x^68+126x^69+76x^70+250x^71+56x^72+136x^73+23x^74+118x^75+16x^76+72x^77+19x^78+42x^79+21x^80+16x^81+2x^83+2x^85+4x^86+4x^87+2x^88+4x^90+1x^98+1x^102

The gray image is a linear code over GF(2) with n=292, k=10 and d=136.
This code was found by Heurico 1.16 in 0.299 seconds.